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Abstract. We present a family of scale-free network model consisting of cliques, which is established by a
simple recursive algorithm. We investigate the networks both analytically and numerically. The obtained
analytical solutions show that the networks follow a power-law degree distribution, with degree exponent
continuously tuned between 2 and 3. The exact expression of clustering coefficient is also provided for
the networks. Furthermore, the investigation of the average path length reveals that the networks possess
small-world feature. Interestingly, we find that a special case of our model can be mapped into the Yule
process.

PACS. 89.75.-k Complex systems – 89.75.Fb Structures and organization in complex systems – 05.10.-a
Computational methods in statistical physics and nonlinear dynamics

1 Introduction

Over the last few years, it has been suggested that a lot
of social, technological, biological, and information net-
works share the following three striking statistical char-
acteristics [1–4]: power-law degree distribution [5], high
clustering coefficient [6], and small average path length
(APL). Power-law degree distribution indicates that the
majority of nodes (vertices) in such networks have only
a few connections to other nodes, whereas some nodes
are connected to many other nodes in the network. Large
clustering coefficient implies that nodes having a common
neighbor are far more likely to be linked to each other than
are two nodes selected randomly. Short APL shows that
the expected number of links (edges) needed to pass from
one arbitrarily selected node to another one is low, that
is, APL grows logarithmically with the number of nodes
or slower.

In order to mimic such complex real-life systems,
a wide variety of models have been proposed [1–4],
among which the most well-known successful attempts
are the Watts and Strogatz’s (WS) small-world network
model [6] and Barabási and Albert’s (BA) scale-free net-
work model [5], which have attracted an exceptional
amount of attention from a wide circle of researchers and
started an avalanche of research on the models of sys-
tems within the physics community. After that, a consid-
erable number of other models and mechanisms, which
may represent processes more realistically taking place
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in real-life systems, have been developed. These mainly
include nonlinear preferential attachment [7], initial at-
tractiveness [8], edge rewiring [9] and removal [10], aging
and cost [11], competitive dynamics [12], duplication [13],
weight [14,15], geographical constraint [16,17], Apollonian
packing [18–23] and so forth. Today, modeling complex
systems with small-world and scale-free characteristics is
still an important issue.

Recently, Dorogovtsev, Goltsev, and Mendes have
demonstrated that scale-free behavior and small-world ef-
fect can be excellently modeled by using pure mathe-
matical objects and methods to construct a deterministic
graph [24], called pseudofractal scale-free network (PSFN)
which was extended by Comellas et al. in [25]. PSFN
has drawn much attention from the scientific community,
many dynamical processes taking place in PSFN have
been intensively studied, including synchronization [27],
diffusion [28], and opinion formation [29]. The PSFN is a
regular deterministic network in a certain sense without
statistical mechanics for consideration. In [30], Dorogovt-
sev, Mendes and Samukhin proposed a random growing
network, which we call random pseudofractal scale-free
network (RPSFN). The PSFN and RPSFN may provide
valuable insight into some particular real-life networks.

In this paper, we propose a general scenario for con-
structing evolving pseudofractal networks (EPNs) gov-
erned by three parameters m, p, and q, which control
the relevant network characteristics. The EPN unifies the
PSFN and RPSFN to the same framework, i.e. the PSFN
and RPSFN are special cases of EPN. In addition to PSFN
and RPSFN, the EPN also includes many other models
as its particular cases. More interestingly, one particular
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Fig. 1. Illustration of a deterministically growing network in
the case of m = 2, p = 1, and q = 2, showing the first three
steps of growing process.

case of EPNs can be mapped into the Yule process. The
growing EPNs are composed of cliques, and result in
a power-law degree distribution with degree exponent
changeable between 2 and 3, a very large clustering co-
efficient, and a small-world feature.

2 Network construction

We construct the networks in a recursive manner and de-
note the networks after t generations by Q(q, t), q ≥ 2, t ≥
0. Then the network construction process is as follows: For
t = 0, Q(q, 0) is a complete graph Kq+1 (or (q+1)-clique).
For t ≥ 1, Q(q, t) is obtained from Q(q, t− 1). For each of
the existing subgraphs of Q(q, t− 1) that is isomorphic to
q-clique, with probability p (0 < p ≤ 1), m (m is a positive
integer) new vertices are created, and each is connected to
all the vertices of this subgraph. The growing process is
repeated until the network reaches a desired size. Figure 1
shows the network growing process for a particular case
of m = 2, p = 1, and q = 2.

There are at least five limiting cases of our model listed
below. (i) When m = 1, p = 1, and q = 2, the networks are
exactly the same as the pseudofractal scale-free network
(PSFN) [24]. (ii) When m = 1, p → 0 (but p �= 0), and q =
2, our model is reduced to the random pseudofractal scale-
free network (RPSFN) [30]. (iii) When m = 1, 0 < p ≤ 1,
and q = 2, our networks coincide with the stochastically
growing scale-free network described in [31]. (iv) When
m = 1, p = 1, and q ≥ 2, our networks reduce to the
recursive graphs discussed in [25]. (v) When p = 1 and
q ≥ 2, our networks turn out to be the graphs introduced
in [26]. Thus, varying parameters m, p, and q, we can
study many crossovers between these limiting cases.

Next we compute the numbers of nodes and links
in Q(q, t). Let Lv(t), Le(t) and Kq,t be the numbers
of vertices, edges and q-cliques created at step t, re-
spectively. Note that the addition of each new node
leads to q new q-cliques and q new edges. So, we have
Le(t) = Kq,t = qLv(t). Then, at step 1, we add expected
Lv(1) = mp(q + 1) new nodes and Le(1) = mpq(q + 1)
new edges to Q(q, 0). After simple calculations, one can
obtain that at ti(ti > 1) the numbers of newly born

nodes and edges are Lv(ti) = mp(q +1)(1+mpq)ti−1 and
Le(ti) = mpq(q + 1)(1 + mpq)ti−1, respectively. Thus the
average number of total nodes Nt and edges Et present at
step t is

Nt =
t∑

ti=0

Lv(ti) =
(q + 1)[(mpq + 1)t + q − 1]

q
(1)

and

Et =
t∑

ti=0

Le(ti) =
(q + 1)[2(mpq + 1)t + (q − 2)]

2
, (2)

respectively. So for large t, The average degree kt = 2Et

Nt

is approximately 2q.

3 Topological properties

Topology properties are of fundamental significance to un-
derstand the complex dynamics of real-life systems. Here
we focus on three important characteristics: degree dis-
tribution, clustering coefficient, and average path length,
which are determined by the tunable model parameters
m, p, and q.

3.1 Degree distribution

Degree distribution is one of the most important statistical
characteristics of a network. Firstly, we follow the method
that was introduced in [20,23] for the calculation of degree
distribution for the general case; then, we use the rate-
equation approach [32] to get the degree distribution for
some limiting cases.

3.1.1 General case

When a new node i is added to the networks at step ti,
it has degree q and forms q q-cliques. Let Lq(i, t) be the
number of q-cliques at step t that will possibly create new
nodes connected to the node i at step t + 1. At step ti,
Lq(i, ti) = q. By construction, we can see that in the sub-
sequent steps each new neighbor of i generates q − 1 new
q-cliques with i as one node of them. Then at step ti + 1,
there are mpq new nodes which forms mpq(q − 1) new q-
cliques containing i. Let ki(t) be the degree of i at step t.
We can easily find following relation for t > ti + 1:

∆ki(t) = ki(t) − ki(t − 1) = mpLq(i, t − 1) (3)

and
Lq(i, t) = Lq(i, t − 1) + (q − 1)∆ki(t). (4)

From the above two equations, we can derive: Lq(i, t +
1) = Lq(i, t)[1 + mp(q − 1)]. Since Lq(i, ti) = q, we have
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Lq(i, t) = q[1+mp(q−1)]t−ti and ∆ki(t) = mpq[1+mp(q−
1)]t−ti−1. Then the degree ki(t) of node i at time t is

ki(t) = ki(ti) +
∑t

th=ti+1 ∆ki(th)

= q
(

[1+mp(q−1)]t−ti+q−2
q−1

)
. (5)

Since the degree of each node has been obtained explic-
itly as in equation (5), we can get the degree distribu-
tion via its cumulative distribution [3], i.e., Pcum(k) ≡
1

Nt

∑
k′≥k N(k′, t) ∼ k1−γ , where N(k′, t) denotes the

number of nodes with degree k′. The detailed analysis is
given as follows. For a degree k

k = q

(
[1 + mp(q − 1)]t−s + q − 2

q − 1

)
, (6)

there are Lv(s) = mp(q + 1)(1 + mpq)s−1 nodes with this
exact degree, all of which were born at step s. All nodes
born at time s or earlier have this or a higher degree. So
we have

∑

k′≥k

N(k′, t) =
s∑

a=0

Lv(a) =
(q + 1)[(mpq + 1)s + q − 1]

q
.

As the total number of nodes at step t is given in equa-
tion (1) we have

(
[1 + mp(q − 1)]t−s + q − 2

1 − 1/q

)1−γ

=

(q + 1)[(mpq + 1)s + q − 1]
q

(q + 1)[(mpq + 1)t + q − 1]
q

.

Therefore, for large t we obtain
[
[1 + mp(q − 1)]t−s

]1−γ = (1 + mpq)s−t (7)

and
γ ≈ 1 +

ln(1 + mpq)
ln[1 + mp(q − 1)]

. (8)

Thus, the degree exponent γ is a continuous function of
m, p and q, and belongs to the interval [2,3], coinciding
with the empirically found results. In some limiting cases,
equation (8) recovers the results previously obtained in
references [24–26,30,31]. Figure 2 shows, on a logarithmic
scale, the scaling behavior of the cumulative degree dis-
tribution Pcum(k) for different values of p in the case of
m = 1 and q = 2. Simulation results agree very well with
the analytical ones.

3.1.2 Rate equation for some limiting cases

When m = 1 and p → 0 (but p �= 0), our model turns out
to be the graph, which we call expanded random pseud-
ofractal scale-free network (ERPSFN) that evolves as fol-
lows (see [31] for interpretation): starting with a (q+1)-
clique (t = 0), at each time step, we choose an existing
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Fig. 2. The cumulative degree distribution Pcum(k) at various
p values for the case of m = 1 and q = 2. The circles (a),
squares (b), stars (c), and triangles (d) denote the simulation
results for networks with different evolutionary steps t = 1350,
t = 25, t = 16, and t = 13, respectively. The four straight
lines are the theoretical results of γ(m,p, q) as provided by
equation (8). All data are from the average of 50 independent
runs.

q-clique, then we add a new node and join it to all the
nodes of the selected q-clique. When q = 2, the particu-
lar model is exactly the random pseudofractal scale-free
network (RPSFN) [30].

In fact, the expanded random pseudofractal scale-
free network can be easily mapped into the Yule pro-
cess [33,34], which was inspired by observations of the
statistics of biological taxa. The Yule process can be pre-
scribed mathematically as follows: we measure the passage
of time by the number of genera. At each time step one
new species founds a new genus, thereby increasing the
number of genera by 1, and q other species are added to
various pre-existing genera which are selected in propor-
tion to the number of species they already have. Let the
nodes and q-cliques in ERPSFN correspond to genera and
species, respectively, then the mapping from ERPSFN to
the Yule process is established. From this perspective, our
model may find some applications in biological systems.
Next, we show that the degree distribution of ERPSFN
is power-law with the same degree exponent as the Yule
distribution.

Since the size of ERPSFN is incremented by one with
each step, here we use the step value t to represent a
node created at this step. Furthermore, after a new node
is added to the network, the number of q-cliques increases
by q. We can see easily that at step t, the network consists
of N = t + q + 1 nodes and Nq = qN − q2 + 1 q-cliques.

One can analyze the degree distribution mathemati-
cally as follows. Given a node, when it is born, it has
degree q, and the number of q-cliques containing this
node is also q. After that, when its degree increases by
one, the number of q-cliques with this node as one of
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its components increases by q − 1, so the number of
q-cliques for selection containing a node with degree k
is (q − 1)k − q2 + 2q. We denote by Pk,N the fraction
of nodes with degree k when the network size is N .
Thus the number of such nodes is NPk,N . Then the
probability that the new node happens to be connected
to a particular node i having degree ki is proportional
to (q− 1)ki − q2 +2q, and so when properly normalized is
just [(q − 1)ki − q2 + 2q]/(qN − q2 + 1). Hence, between
the appearance of the Nth and the (N + 1)th node, the
total expected number of nodes with degree k that gain a
new link during this interval is

(q − 1)k − q2 + 2q

qN − q2 + 1
NPk,N � q − 1

q
kPk,N , (9)

which holds for large N . Observe that the number of nodes
with degree k will decrease at each time step by exactly
this number. At the same time the number increases be-
cause of nodes that previously had k− 1 degrees and now
have an extra one. Thus we can write a rate equation [32]
for the new number (N + 1)Pk,N+1 of nodes with degree
k as:

(N +1)Pk,N+1 = NPk,N +
q − 1

q
[(k − 1)Pk−1,N − kPk,N ] .

(10)
The only exception to equation (10) is for nodes having
degree q, which instead obey the equation

(N + 1)Pq,N+1 = NPq,N + 1 − q − 1
q

qPq,N , (11)

since by construction exactly one new such node appears
at each time step. When N approaches infinity, we as-
sume that the degree distribution tends to some fixed
value Pk = limN→∞ PN,k. Then from equation (11), we
have

Pq = 1/q. (12)

And equation (10) becomes

Pk =
q − 1

q
[(k − 1)Pk−1 − kPk] , (13)

from which we can easily obtain the recursive equation

Pk =
k − 1

k + 1 + 1
q−1

Pk−1, (14)

which can be iterated to get

Pk =
(k − 1)(k − 2) . . . q

(k + 1 + 1
q−1 )(k + 1

q−1 ) . . . (q + 2 + 1
q−1 )

Pq

=
(k − 1)(k − 2) . . . (q + 1)

(k + 1 + 1
q−1 )(k + 1

q−1 ) . . . (q + 2 + 1
q−1 )

, (15)

where equation (12) has been used. This can be simpli-
fied further by making use of a handy property of the
Γ -function, Γ (a) = (a− 1)Γ (a− 1) with Γ (a) defined by:

Γ (a) =
∫ ∞

0

xa−1e−xdx. (16)

By this property and Γ (1) = 1, we get

Pk =
(q + 1 + 1

q−1
)(q + 1

q−1
) . . . (2 + 1

q−1
)

q(q − 1) . . . 1

Γ (k)Γ (2 + 1
q−1

)

Γ (k + 2 + 1
q−1

)

=
(q + 1 + 1

q−1
)(q + 1

q−1
) . . . (2 + 1

q−1
)

q(q − 1) . . . 1
B(k, 2 +

1

q − 1
),

(17)

where B(a, b) is the Legendre beta-function, which is defined as

B(a, b) =
Γ (a)Γ (b)

Γ (a + b)
. (18)

Note that the beta-function has the interesting property that
for large values of either of its arguments it itself follows a
power law. For instance, for large a and fixed b, B(a, b) ∼ a−b.
Then we can immediately see that for large k, Pk also has a
power-law tail with a degree exponent

γ = 2 +
1

q − 1
. (19)

For q = 2, γ = 3, which has been obtained previously in [31].
Note that equation (17) is similar to the Yule distribution [35]
called by Simon [36].

3.2 Clustering coefficient

In a network if a given node is connected to k nodes, defined
as the neighbors of the given node, then the ratio between the
number of links among its neighbors and the maximum possible
value of such links k(k−1)/2 is the clustering coefficient of the
given node [6]. The clustering coefficient of the whole network
is the average of this coefficient over all nodes in the network.

For our network, the analytical expression of clustering co-
efficient C(k) for a single node with degree k can be derived
exactly. When a node is created it is connected to all the nodes
of a q-clique, in which nodes are completely interconnected. So
its degree and clustering coefficient are q and 1, respectively.
In the following steps, if its degree increases one by a newly
created node connecting to it, then there must be q−1 existing
neighbors of it attaching to the new node at the same time.
Thus for a node of degree k, we have

C(k) =
q(q−1)

2
+ (q − 1)(k − q)

k(k−1)
2

=
2(q − 1)(k − q

2
)

k(k − 1)
, (20)

which depends on both k and q. For k � q, the C(k) is inversely
proportional to degree k. The scaling C(k) ∼ k−1 has been
found for some network models [18–26,30,31,37], and has also
been observed in several real-life networks [37].

Using equation (20), we can obtain the clustering Ct of the
networks at step t:

Ct =
1

Nt

t∑

r=0

2(q − 1)(Dr − q
2
)Lv(r)

Dr(Dr − 1)
, (21)

where the sum runs over all the nodes and Dr is the degree of
the nodes created at step r, which is given by equation (5).

In the infinite network order limit (Nt → ∞), equation (21)
converges to a nonzero value C. Obviously, network clustering
coefficient Ct is a function of parameters m, p and q. If we fixed
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Fig. 3. The dependence of network clustering coefficient C on
m, p, and q. Results are averaged over ten network realizations
for each datum.

any two of them, Ct increases with the rest. Exactly analytical
computations show: in the case m = 1 and q = 2, when p
increases from 0 to 1, C grows from 0.739 [38] to 0.8 [24]; In
the case p = 1 and q = 2, when m increases from 1 to infinite, C
grows from 0.8 [24] to 1; Likewise, in the case m = 1 and p = 1,
C increases from 0.8 to 1 when q increases from 2 to infinite,
with special values C = 0.8571 and C = 0.8889 for q = 3 and
q = 4, respectively. Therefore, the average clustering coefficient
is very large, which shows the evolving networks are highly
clustered. Figure 3 exhibits the dependence of the clustering
coefficient C on m, p and q, which agree well with our above
conclusions.

From Figures 2 and 3 and equations (8) and (21), one can
see that both degree exponent γ and clustering coefficient C
depend on the parameter m, p, and q. The mechanism resulting
in this should be paid further effort. The fact that there is a
biased choice of the cliques at each evolving step may be a
possible explanation, see reference [39].

3.3 Average path length

The most important property for a small-world network is a
logarithmic average path length (APL) (with the number of
nodes). It has obvious implications for the dynamics of pro-
cesses taking place on networks. Therefore, its study has at-
tracted much attention. Here APL means the minimum num-
ber of edges connecting a pair of nodes, averaged over all pairs
of nodes. In this subsection, first we give an upper bound of
APL for the general case; then, we compute exactly the APL
for a particular deterministic network. Both of the obtained
values grow logarithmically with the network size.

3.3.1 An upper bound of APL for general case

We denote the network nodes by the time step of their gener-
ations, v = 1, 2, 3, · · · , N − 1, N . Using L(N) to represent the
APL of the our model with system size N , then we have follow-
ing relation: L(N) = 2σ(N)

N(N−1)
, where σ(N) =

∑
1≤i<j≤N di,j is
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Fig. 4. Semilogarithmic graph of the APL vs the network size
N in the special case of m = 1. Each datum point is obtained
as an average of 50 independent network realizations. The lines
are linear functions of ln N .

the total distance, in which di,j is the shortest distance between
node i and node j. By using the approach similar to that in [17,
21–23], we can evaluate the APL of the present model.

Obviously, when a new node enters the networks, the small-
est distances between existing node pairs will not change.
Hence we have

σ(N + 1) = σ(N) +

N∑

i=1

di,N+1. (22)

Equation (22) can be approximately represented as:

σ(N + 1) = σ(N) + N + (N − q)L(N − q + 1), (23)

where

(N − q)L(N − q + 1) =
2σ(N − q + 1)

N − q + 1
<

2σ(N)

N
. (24)

Equations (23) and (24) provide an upper bound for the vari-
ation of σ(N) as

dσ(N)

dN
= N +

2σ(N)

N
, (25)

which yields
σ(N) = N2(ln N + ω), (26)

where ω is a constant. As σ(N) ∼ N2 ln N , we have L(N) ∼
lnN .

Note that equation (25) was deduced from an inequality,
which implies that the increasing tendency of L(N) is at most
as ln N with N . Thus, our model exhibits the presence of small-
world property. In Figure 4, we show the dependence of the
APL on system size N for different p and q in the case of m = 1.
From Figure 4, one can see that for fixed q, APL decreases with
increasing p; and for fixed p, APL is a decreasing function of
q. When network size N is small, APL is a linear function
of ln N ; while N becomes large, APL increases slightly slower
than ln N . So the simulation results are in agreement with the
analytical prediction. It should be noted that in our model,
if we fix p and q, considering other values of m greater than
1, then the APL will increase more slowly than in the case
m = 1 as in those cases the larger m is, the denser the network
becomes.
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Fig. 5. The network after t + 1 generations, Qt+1, is obtained

by joining three copies of generation t (i.e. Q
(1)
t , Q

(2)
t , Q

(3)
t ) at

the three nodes of highest degree, denoted by A, B, C.

3.3.2 Exact result of APL for a special case

For p = 1, the networks are deterministic, which allows one to
calculate the APL analytically. Here we only consider a par-
ticular case of m = 1, p = 1, and q = 2, which we denote
after t generations by Qt. Then the average path length of Qt

is defined to be:

d̄t =
Dt

Nt(Nt − 1)/2
, (27)

where
Dt =

∑

i,j∈Qt

di,j . (28)

The deterministic recursive construction of this particular net-
work has a self-similar structure that allows us to exactly cal-
culate d̄t by following a similar approach introduced in [40].
As shown in Figure 5, the network Qt+1 may be obtained by
joining at the hubs (the most connected nodes) three copies of

Qt, which we label Q
(α)
t , α = 1, 2, 3 [28]. Then one can write

the sum over all shortest paths Dt+1 as

Dt+1 = 3Dt + ∆t, (29)

where ∆t is the sum over all shortest paths whose endpoints
are not in the same Qt branch. The solution of equation (29)
is

Dt = 3t−1D1 +

t−1∑

τ=1

3t−τ−1∆τ . (30)

The paths that contribute to ∆τ must all go through at least
one of the three hubs (A, B, C) where the three different Qt

branches are joined. Below we give the analytical expression
for ∆t named the crossing paths, which is given by

∆t = ∆1,2
t + ∆2,3

t + ∆1,3
t , (31)

where ∆α,β
t denotes the sum of all shortest paths with end-

points in Q
(α)
t and Q

(β)
t . It should be noted that ∆α,β

t excludes
the paths where either endpoint is the hub they have in com-
mon, and includes only one of the paths from the unshared

hub in one Qt branch (e.g. Q
(α)
t ) to all non-hub nodes in the

other Qt branch (e.g. Q
(β)
t ).

By symmetry, ∆1,2
t = ∆2,3

t = ∆1,3
t , we have

∆t = 3∆1,2
t , (32)

where ∆1,2
t is given by the sum

∆1,2
t =

∑

i∈Q
(1)
t , j∈Q

(2)
t

i�=A,C, j �=A

di,j . (33)

In order to find ∆1,2
t , we define

dtot
t ≡

∑

Z∈Q
(1)
t

dZ,A,

dnear
t ≡

∑

Z∈Q
(1)
t

dZ,A<dZ,C

dZ,A , Nnear
t ≡

∑

Z∈Q
(1)
t

dZ,A<dZ,C

1 ,

dmid
t ≡

∑

Z∈Q
(1)
t

dZ,A=dZ,C

dZ,A , Nmid
t ≡

∑

Z∈Q
(1)
t

dZ,A=dZ,C

1 ,

dfar
t ≡

∑

Z∈Q
(1)
t

dZ,A>dZ,C

dZ,A , N far
t ≡

∑

Z∈Q
(1)
t

dZ,A>dZ,C

1 , (34)

where Z �= A and Z �= C. Then we can easily have dtot
t =

dnear
t + dmid

t + dfar
t and Nt = Nnear

t + Nmid
t + N far

t + 2. By
symmetry Nnear

t = N far
t . Thus, by construction, we obtain

{
Nt = 2 Nnear

t + Nmid
t + 2,

Nmid
t+1 = Nmid

t + 2 Nnear
t + 1.

(35)

Using these two relation and considering the initial values, we
obtain partial quantities in equation (34) as

{
N far

t = Nnear
t = 1

6

(−3 + 3t+1
)
,

Nmid
t = 1

6

(
3 + 3t+1

)
.

(36)

Now we return to the quantity ∆1,2
t which can be further

decomposed into the sum of four terms as

∆1,2
t =

∑

i∈Q
(1)
t , j∈Q

(2)
t

i�=A,C, j �=A

di,j

=
∑

i∈Q
(1)
t , j∈Q

(2)
t , i�=A,C, j �=A,B

di,A>di,C , dj,A>dj,B

(di,C + dj,B + 1)

+
∑

i∈Q
(1)
t , j∈Q

(2)
t

i�=A,C, j �=A,B, di,A≤di,C

(di,A + dA,j)

+
∑

i∈Q
(1)
t , j∈Q

(2)
t , i�=A,C, j �=A,B

di,A>di,C , dj,A≤dj,B

(di,A + dA,j)

+
∑

i∈Q
(1)
t , i�=A,C, j=B

(di,A + 1)

= 2Nnear
t dnear

t + (Nnear
t )2

+ (Nnear
t + Nmid

t )(dnear
t + dmid

t + dfar
t )

+ (Nt − 2)(dnear
t + dmid

t )

+ (Nnear
t + Nmid

t )dfar
t

+ Nnear
t (dnear

t + dmid
t )

+ dnear
t + dmid

t + dfar
t + Nt − 2 . (37)

Having ∆1,2
n in terms of the quantities in equation (34), the

next step is to explicitly determine these quantities unresolved.
Since A and C are linked by one edge, for any node i in

the network, di,A and di,C can differ by at most 1. In addition,
considering the self-similar structure of the graph, we can easily
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know that at time t + 1, the quantities dmid
t+1, dnear

t+1 and dfar
t+1

evolve as ⎧
⎨

⎩

dmid
t+1 = dmid

t + 2 dfar
t + 1 ,

dnear
t+1 = dmid

t + 2 dnear
t ,

dfar
t+1 = dmid

t + 2 dfar
t + Nmid

t .

(38)

From these recursive equations we can obtain

⎧
⎪⎨

⎪⎩

dmid
t = 3t−2 (t + 5) ,

dnear
t = 3t−2 (t + 2) ,

dfar
t =

1

54

(
2 (t + 1) · 3t+1 + 11 · 3t+1 − 27

)
.

(39)

Substituting the obtained expressions in equations (36) and
(39) into equations (37) and (32), the crossing paths ∆t is
obtained to be

∆t =
1

12

[
(4 t + 13) 9t − 9

]
. (40)

Inserting equation (40) into equation (30) and using D1 = 21,
we have

Dt =
1

8

(
4 t · 9t + 10 · 3t + 11 · 9t + 3

)
. (41)

Substituting equations (1) and (41) into (27), the exact expres-
sion for the average path length is obtained to be

d̄t =
4 t · 9t + 10 · 3t + 11 · 9t + 3

3 + 4 · 3t+1 + 9t+1
. (42)

In the infinite network size limit (t → ∞),

d̄t � 4

9
t +

11

9
∼ ln Nt, (43)

which means that the average path length shows a logarithmic
scaling with the size of the network.

It should be mentioned that the final expressions contained
in equations (42) and (43) were quoted earlier in reference [24]
[Eqs. (6) and (7) of that work]. However reference [24] did
not provide any of the details of the derivation, so the explicit
calculation presented here is pedagogically useful. Moreover,
the analytical method may guide and shed light on related
studies for other deterministic network models.

4 Conclusions and discussions

In summary, we have proposed and studied a class of evolving
networks consisting of cliques. We have obtained the analyt-
ical and numerical results for degree distribution, clustering
coefficient, as well as the average path length, which are deter-
mined by the model parameters and in accordance with large
amount of real observations. The networks are scale-free, with
degree exponent adjusted continuously between 2 and 3. The
clustering coefficient of single nodes has a power-law spectra,
the network clustering coefficient is very large and independent
of network size. The intervertex separation is small, which in-
creases at most logarithmically as the network size.

In real-life world, many networks consist of cliques. For ex-
ample, in movie actor collaboration network [6] and science
collaborating graph [41], actors acting in the same film or au-
thors signing in the same paper form a clique, respectively. In
corporate director network [42], directors as members in the

same board constitute a clique. Analogously, in public trans-
port networks [43], bus (tramway, or underground) stops shape
a clique if they are consecutive stops on a route, and in the
network of concepts in written texts [44], words in each sen-
tence in the text are added to the network as a clique. All
these pose a very interesting and important question of how to
build evolution models based on this particularity of network
component—cliques. Interestingly, our networks, although dif-
ferent from real world, are formed by cliques, this particularity
of the composing units may provide a comprehensive aspect
to understand some real-life systems. In future, it would be
more interesting to establish a model describing real systems
consisting of cliques such as actor collaboration network where
cliques arise from mutual cooperation [45,46].

Future work should also include studying in detail dynami-
cal processes taking place on our networks, which may provide
some original and interesting results to the field. For exam-
ple, it should be possible to adapt the renormalization-group
techniques used in references [40,47,48] for studying the Ising
model to examine cooperative behavior on the general case of
our model. There could be a variety of interesting phase tran-
sition behaviors as the network structure is modified through
the parameters m, p, and q.
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